О СУЩЕСТВОВАНИИ ЗНАЧИМОЙ НЕЛИНЕЙНОСТИ В СЕЙСМИЧЕСКОМ ДИАПАЗОНЕ ЧАСТОТ. ЧАСТЬ 2.

ООО «Геошельф-Сервис»

Аннотация. В следствии дисперсии скоростей распространения упругих волн сейсмического диапазона частот, воздействие зондирующего сигнала на пласт происходит с «растяжением» во времени (низкочастотные компоненты запаздывают, относительно высокочастотных). Что, в свою очередь, проявляется как внешняя параметризация среды, за счёт которой происходит обогащение регистрируемого спектра отклика нелинейными компонентами.

В работе приведён наглядный пример параметризации на физической модели струны с соответствующими спектрограммами и результатами оценки коэффициентов нелинейности по материалам морской сейсморазведки с последующим расширением спектра полезной записи для бесскважинного случая (без скважинного эталонирования).

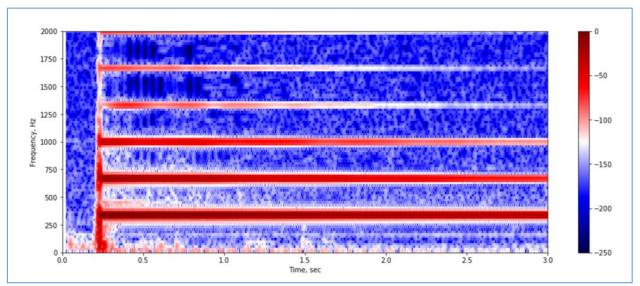
Ключевые слова. Дисперсия скоростей, параметризация, нелинейность, расширение спектра сейсмической записи.

ВВЕДЕНИЕ. Традиционно представление сейсмического изображение среды основано на линейной теории формирования волнового поля, что, в частности, обоснованно существенным усложнением математической модели даже при рассмотрения первых нелинейных членов уравнения движения.

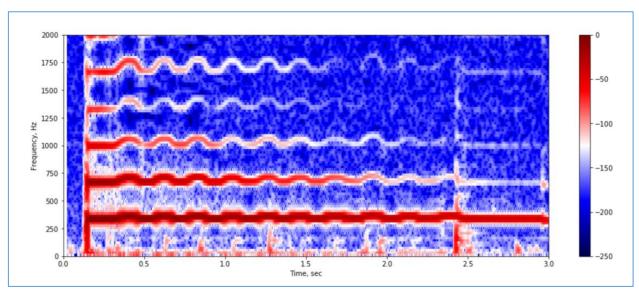
Цель проведённого эксперимента: наглядное представление обогащения спектра нелинейными компонентами на примере физической модели параметризируемого ангармонического осциллятора (струны). Оценка коэффициентов нелинейности младших порядков по данным морской сейсморазведки с возможностью последующего расширения спектра записи.

Методика физического моделирования: происходила запись чистого тона ноты «ми» (псевдолинейный отклик), после чего проводилась запись тона «ми» при периодическом изменении натяжения струны (внешняя параметризация) с последующей оценкой спектрограмм.

Методика эксперимента по данным морской сейсморазведки: временной разрез делился на две полосы частот (условно НЧ и ВЧ), после чего проводился расчёт нелинейного оператора перераспределения энергии из области НЧ в ВЧ, оценка его коэффициентов с последующим расширением спектра сейсмической записи в ВЧ диапазон, выходящий за предел исходной записи.


Методика оценки результатов: проводилась проверка коэффициентов взаимной корреляции синтетических трасс и восстановленной волновой ВЧ записи.

Результаты физического моделирования


На рис.1 изображена спектрограмма чистого тона «ми» (330Гц и кратные частоты).

На рис.2 изображена спектрограмма записи первоначальной ноты «ми» при периодическом изменении натяжения струны.

Ожидаемо, что изменения натяжения струны (параметризация) приводят к вариациям первичного сигнала (линейного отклика), в результате чего общий спектр обогащается вторичными/нелинейными компонентами (спектр на рис.3).

Рис.1. Спектрограмма чистого тона «ми» (330Гц и кратные частоты).

Рис.2. Спектрограмма тона «ми» при параметризации.

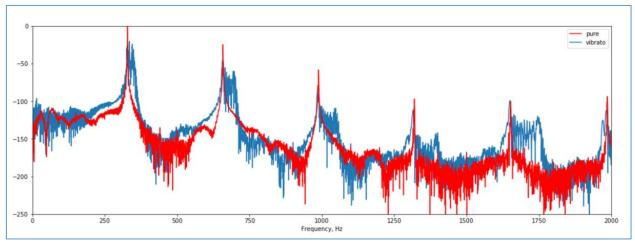
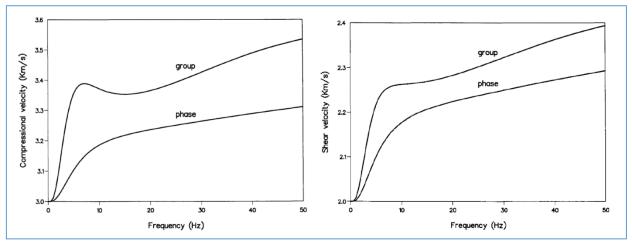



Рис.3. Чистый тон в сопоставлении с тоном при изменении натяжения струны.

Таким образом, внешнее воздействие на струну периодическим (низкочастотным) изменением натяжения привело к появлению в спектре сложных, комбинационных составляющих.

Результаты эксперимента по данным морской сейсморазведки

При импульсном возбуждении, в следствии дисперсии скоростей пробега упругих волн (рис.4), со временем цуг зондирующего широкополосного воздействия «удлиняется» во времени (низкочастотные компоненты запаздывают, относительно высокочастотных). Следовательно, в первую очередь на пласт происходит высокочастотное воздействие (первичное), а уже после – низкочастотное (параметризующее).

Рис.4. Дисперсия скоростей пробега упругих волн в сейсмическом диапазоне частот для пористого образца горной породы (Jose M. Carcione, 1988).

Очевидно, что характер нелинейности в реальной среде зависит от целого ряда факторов, включающих ФЕС, насыщение, ПД и прочие. Как следствие, провести точную оценку функции нелинейности не представляется возможным. Однако, проведённый на морских данных эксперимент показал, что наиболее значимыми являются первые члены разложения функции нелинейности в ряд Тейлора.

На рис.5 изображены панели суммарного разреза с выделенной НЧ и ВЧ (условно) полосой записи и панель квадратичного коэффициента нелинейности оператора переноса энергии из НЧ диапазона в ВЧ.

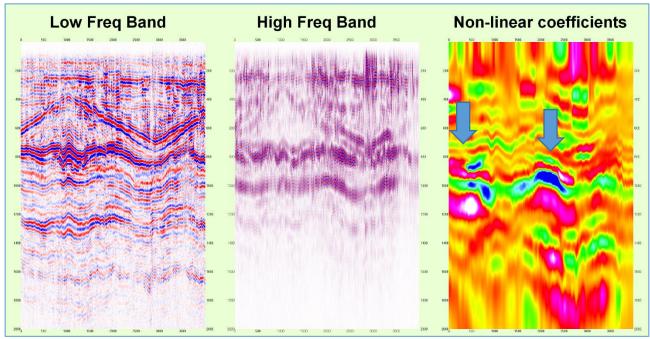


Рис. 5. Оценка квадратичного коэффициента нелинейности по сейсмическим данным.

ВМЕСТО ЗАКЛЮЧЕНИЯ. Коэффициенты функций переноса энергии - сами по себе информативны как дополнительные атрибуты волновой записи. Аномальные области поля нелинейности на рис.5 приурочены к подтверждённым нефтенасыщенным отложениям нижнего мела.

В предыдущих работах авторов доказано, что при известных функциях нелинейности, возможно расширение спектра сигнала сейсмической записи в область ВЧ до 25% от исходной частоты, а в область НЧ до первых герц.

Как уже упоминалось, наиболее значимыми являются коэффициенты при первых членах разложения функций нелинейности в ряд Тейлора. Поле нелинейности на рис.5 позволило расширить полосу полезного сигнала в область ВЧ с высокой степенью сходимости по материалам контрольных скважин, расположенным на приведённом профиле.

ЛИТЕРАТУРА

- 1. Архипов А.А. Патент на изобретение №2566424. Приоритет от 24.07.2014. Способ и технологический комплекс для анализа нелинейных свойств среды с целью расширения спектра регистрируемого волнового сигнала.
- 2. Ведерников Г.В. Исследование кратных гармоник вибросигналов. Избранные статьи: Методика и технологии сейсморазведочных работ. «Новосибирск-Томск-Нортхэмптон», 2006, с.252-261
- 3. Гущин В.В, Шалашов Г.М. О возможности использования нелинейных сейсмических эффектов в задачах вибрационного просвечивания Земли. Сборник научных трудов: Исследование Земли невзрывными сейсмическими источниками. Наука, М, с.144-155, 1981
- 4. Динариев О.Ю., Николаевский В.Н. Нелинейная математическая модель генерации низких частот в спектре сейсмического сигнала. Собрание трудов: Геомеханика. Том 2. АНО «Ижевский институт компьютерных исследований», Ижевск, с.271-276, 2010
- 5. Динариев О.Ю., Николаевский В.Н. Кратное увеличение периода при распространении волн в упругих телах с диссипативной микроструктурой. Собрание трудов: Геомеханика. Том 2. АНО «Ижевский институт компьютерных исследований», Ижевск, с.277-284, 2010
- 6. Жуков А.П., Колесов С.В., Шехтман Г.А., Шнеерсон М.Б. Сейсморазведка с вибрационными источниками. ООО «Издательство ГЕРС», 2011
- 7. Жуков А.П., Шнеерсон М.Б. Адаптивные и нелинейные методы вибрационной сейсморазведки., Недра, М, с.51-95, 2000
- 8. Зейгарник В.А., Ключкин В.Н., Кузнецов А.Н. Аппаратура для физического моделирования нелинейных явлений в сейсморазведке. Сейсмические приборы. Т. 45, № 3, с.41-47, 2009
- 9. Касьянов Д.А., Шалашов Г.М. О возможности нелинейной сейсмоакустической томографии. Сборник научных трудов: Проблемы геотомографии. Наука, М, с.203-209, 1997
- 10. Логинов К.И., Жуков А.П., Шнеерсон М.Б, Логинов И.В. Нелинейные волновые поля в акустическом каротаже и вибрационной сейсморазведке. ООО «Издательство ГЕРС», 2012
- 11. Николаев А.В. Проблемы нелинейной сейсмики. Под ред. А.В.Николаева и И.Н.Галкина. Наука, М, 1987
- 12. Новожилов В.В., Толоконников Л.А., Черных К.Ф. Нелинейная теория упругости. Механика в СССР за 50 лет. Том 3. Наука, М, с.71-78, 1972
- 13. Хаврошкин О.Б., Цыплаков В.В. Исследование нелинейных эффектов частотным анализом виброграмм. Сборник научных трудов: Исследование Земли невзрывными сейсмическими источниками. Наука, М, с.272-280, 1981
- 14. Шулакова В.Е., Нелинейные свойства вибросейсмических волновых полей и их использование для прогнозирования коллекторских свойств резервуаров. 2007, автореф. дисс. канд. физ.-мат. Наук
- 15. G.S. Martin, R. Wiley, K.J. Marfurt, Marmousi2: An elastic upgrade for Marmousi. February 2006, The Leading Edge, p.156-166
- 16. Zhukov A.P., Loginov K.I., Shneerson M.B., Shulakova V.E., Kharisov R.G., Ekimenko V.A. Nonlinear properties of vibrator-generated wavefields and their application to hydrocarbon detection. November 2007, The Leading Edge, p.1395-1402